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The thermodynamic limit and the replica method for 
short-range random systems 

J L van Hemmen? and R G Palmer$ 
Department of Physics, Duke University, Durham, NC 27706, USA 

Received 16 March 1982 

Abstract. Short-range spin systems with random interactions are considered. A simple 
proof is given showing that the free energy of almost every sample converges to the 
average free energy in the thermodynamic limit. A stronger criterion, thermodynamic 
convergence, is also demonstrated. This implies that the N + 03 and n + 0 limits may be 
interchanged in the replica method. 

1. Introduction 

There is considerable current interest in random systems, which are usually described 
by a Hamiltonian H that depends on some quenched random variables as well as 
dynamical quantities. For a particular configuration { J }  of the random variables the 
corresponding free energy per site f(P, {J}) in the thermodynamic limit is given by 

where 

Z N @ ,  VI) = T r  exp(-PH). 

Here ZN(& {J}), usually abbreviated to ZN, is the partition function for the configur- 
ation { J }  at inverse temperature p = l/kT, and N is the number of sites or particles. 
Generally one is only able to compute the average free energy in the thermodynamic 
limit, 

We always use (. . .) to denote averaging with respect to the configuration { J } .  
The average f @ )  may be computed using the replica method. Defining for real n 

4 ~ ( n )  = N-'  ln(Zh)  (3) 

~ N ' ( o )  = (N-' In 2,) 

we see that 
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(with the prime denoting differentiation with respect to n), and thus 

-P f (P )=  lim 4 m .  (4) 
N-m 

In practice one needs the thermodynamic limit to compute the partition function, so 
one actually computes d’(0)  where 

4 ( n ) =  lim 4 N ( n ) .  
N-w 

4‘(0) is equal to -pf(p) if the limits on N and n (differentiation) are interchangeable. 
In a previous paper (van Hemmen and Palmer 1979) we studied questions of the 

existence and interchange of limits, with emphasis on the Sherrington-Kirkpatrick 
(1975) long-range spin glass model. Naive application of the replica method, comput- 
ing 4’(0) from an ‘obvious’ extension from rigorously known values 4 (n) at positive 
integer n, gives an incorrect result for -pf(p). We were able to show that the obvious 
extension is definitely wrong; if it had been correct the N and n limits would have 
been interchangeable. Recent theories (e.g. Parisi 1979) construct different extensions 
by ‘replica symmetry breaking’. Note however that there is no replica symmetry 
breaking for positive integer n. 

In this paper we consider short-range lattice models. We first study the thermody- 
namic limit and show that the limits (1) and (4) exist and are equal with probability 
one. Thus, almost every configuration { J }  gives the same result in the thermodynamic 
limit. Introducing a novel criterion, thermodynamic convergence, we then show that 
the N and n limits may be interchanged, so that - /3 f (p)  = 4’(0) for these models. 

The key to our proofs is that systems with short-range interactions may be 
decomposed into many ‘weakly’ interacting subsystems which each already approxi- 
mate the macroscopic ( N  + CO) system fairly well. Brout (1959) seems to have been 
the first to realise that this property implies that the typical free energy is close to the 
average f(p). 

We illustrate the problem with a very simple example in 0 2 before turning to the 
thermodynamic limit in 0 9  3 and 4, and the replica method in 9 5 .  

2. A simple example 

We consider a one-dimensional Ising chain with random nearest-neighbour interac- 
tions Ji, described by 

N 
H = - 1 JiSjSj.,. 

i = l  

The Ji are independent identically distributed (IID) random variables with mean (J) 
and variance ( J 2 ) - ( J ) 2 .  Each Si is *l, and we assume free boundary conditions. 
There are N interactions and N + 1 spins; we call the system size N in (1)-(5) for 
convenience, the difference disappearing in the thermodynamic limit. 

We may write 
N N 

i = l  i = l  
exp(pH) = n cosh pJ,  n (1 +S,S,+l tanh pJ , )  

and because every term (except 1) in the expansion of the second product contains 
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some Si to an odd power, we obtain simply 
N 

Z N  = n (2 cosh & T i ) .  
i = l  

Thus 

3883 

(6 )  

N 

N - m  i = l  
-Pf(p, { J } )  = lim N-’  ln(2 cosh p J i )  

which involves the mean of N IID random variables ln(2 cosh PJi)  with N + 00. By 
the strong law of large numbers (Feller 1968), this is equal in the limit N + 00 to the 
common population mean (ln(2 cosh P J ) )  almost everywhere. ‘Almost everywhere’ 
(AE) means that the set of configurations { J }  for which the result does nor hold has 
probability (i.e. measure) zero. We therefore have 

so that the free energy per site is independent of the configuration { J }  almost 
everywhere in the thermodynamic limit. This feature is characteristic of systems which 
can be broken into many (nearly) independent parts, as we shall see for short-range 
systems in the next section. 

Turning to the replica method, we can evaluate (3) explicitly for all real n by using 
(6) and the fact that the Ji are IID: 

(2 cosh PJi)’) = ln((2 cosh P J ) ” ) .  
i = l  

The thermodynamic limit in (4) and ( 5 )  is then trivial and we conclude 

Thus in this special case the N and n limits may be interchanged. One is inclined to 
think that the almost everywhere convergence is sufficient to guarantee this interchange 
in general. In 00 4 and 5 we show that a slightly stronger ‘thermodynamic convergence’ 
criterion pertains in short-range models and does allow the interchange. 

3. Almost everywhere convergence 

We consider a quantum spin system on a d-dimensional cubic lattice of N sites, 
described by the Hamiltonian? 

H = - 1 J&Sj - 1 hiSi. 
i j  1 

The Jii, 1 si < j s N,  and the hi, 1 si  s N ,  are independent random variables. The 
distribution of the .Iii only depends on (i - j ) ,  whereas the hi are identically distributed. 
To simplify the argument we take lJi j lsB,  and hi = 0; the former assumption is 
technical, the latter convenient. Furthermore we assume Jii = 0 if [ i  - j [  > t r .  

t For the sake of definiteness one may imagine that this Hamiltonian describes an k ing  spin system, but 
the reasoning below applies equally well to Heisenberg and more general quantum models. 
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In this section we prove ( a )  that the limit in (2) exists, so (N-' In ZN)+ -pf(p) as 
N + CO, and (6) that the limit in (1) exists, and is equal to -pf(p), almost everywhere, 
so N-' In Z N  - l-Pf(P) as N -+ CO. The problem has been considered before by 
Vuillermot (1977), but the present arguments are simpler and will be used again in 
the next section. 

We take a sequence of cubes of increasing size N which finally fill the whole space. 
The side of a cube is taken to be mk, so that N = We consider a division into 
K = k d  subcubes of side m and M = m d  sites each. The subcubes interact with each 
other only in the 'corridors' at their boundaries; cf Huang (1963, appendix C ) .  As 
the range of the interaction is f r ,  the width of a corridor is r. Taking advantage of 
the Bogoliubov-Peierls inequality (Ruelle 1969, equation (2.15)) 

AE 

/ lnTr  exp(A)-lnTrexp(B)IsIIA -BII (7) 

1nZN = 1 lnZM(i)+RN 

we may write 
K 

i = l  

where RN takes into account the interactions between different subcubes. Because 
the number of points in the corridors is less than 2dKmd-'r ,  we have 

RN s ABKm d - l r d + l  (8) 

with A a geometrical constant. Hence 
K 1 N-'  In ZN -K-' 1 M-' In ZM(i) 1s RN/N = C / m  (9) 

where the constant C depends only on the geometry and the interaction range and 
strength. 

The second term of (9) is the mean of K IID random variables M-' In ZM(i )  and 
thus, by the strong law of large numbers (Feller 1968), converges almost everywhere 
as K + 00 to the common population mean (M-'  In ZM).  Thus, taking the limit K + CO, 

and hence N + CO, we find for fixed M and almost every configuration { J }  

-C/m +(A!-' In 2,) s l i m  inf N-' In zN s l i m  sup N-' In zN s (M-'  In 2,) + C/m. 

i = l  

N-m N-w 

(10) 

This result does not depend on the specific sequence of cubes used; a sequence with 
sides mk + a ,  N = (mk + a ) d ,  1 s a < m gives the very same estimate because the extra 
contribution to RN/N from the outer surface goes to zero as K +CO. 

Whatever N,  N-'  In ZN is uniformly bounded; this follows directly from (7) with 
A :=H, B := 0. The same therefore holds true for (N-'  In ZN), so Fatou's lemma 
(Halmos 1950, p 113) implies 

with the second inequality coming from (10). By sending M and m to infinity we 
arrive at 

lim sup (N-' In 2,) < lim inf (N-' In ZN)  
N - m  N +03 
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so the limit in (2) 

-pf(p) = lim (N-' In 2,) (11) 
N - m  

exists as claimed. 

every configuration { J } ,  
Returning to (10) we again send m and M to infinity to conclude that, for almost 

exists and is equal to -pf(p) from (11). This justifies the usual procedure of computing 
(11) in place of (12); one may average without altering the result. The mean, typical, 
and most probable values of thermodynamic quantities are thus identical. 

Two extensions deserve mention. Firstly, the thermodynamic limit for a sequence 
of fairly arbitrarily shaped volumes (a la van Hove, say) may be reduced to the present 
case by a standard argument (Ruelle 1969). Secondly, the result remains valid for 
unbounded Jll if the first moment of IJ,I is finite, as is true of all physically relevant 
distributions except the Lorentzian. In equation (8) B must be replaced by X' lJtll/C' 1, 
where C' refers to pairs of interacting sites within the corridors, and our proof requires 
B to remain bounded as first K and then M are sent to infinity. The first is guaranteed 
by the finite moment, but the second involves a measure-theoretic subtlety because 
the corridors change with M. It goes through, however, because all the operations 
are countable. 

The conclusion that averaging does not alter the result is applicable to thermody- 
namic quantities derivable from the free energy. It may not be true, however, for 
local quantities such as two-point correlation functions, whose value typically does 
depend on the specific configuration {J} .  For example, in many spin glass models one 
takes an even distribution for JIJ, which allows a local gauge transformation 

si + -s, Jij + - J i j  

(for fixed i, and all j connected to i )  within an average. Thus all averaged m-point 
correlation functions are zero (cf Chalupa 1977). In fact one can show an even stronger 
result. Take a specific sample and consider the correlation function (S(r)S(r +I?)), 
with R fixed. Here (. . .)@ is a thermal average, which we assume to exist (N-+oo). 
Whatever the correlation function its spatial average vanishes with probability one. 
To see this, note that for instance 

by the ergodic theorem (cf van Hemmen 1977). The right-hand side is zero for a 
symmetric Jij distribution, as just discussed. Despite these results we do not expect 
all spin-spin correlations to vanish in a particular sample, so we must conclude that 
averaging over randomness, or even spatially, in general does not provide pertinent 
information. 

4. Thermodynamic convergence 

To prove the interchange of limits in the replica method we need a stronger notion 
of convergence than the almost everywhere result of the last section. 
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Let P be a probability measure, and P{A} be the probability that an event A 
occurs. Technically, P is defined on a probability space R whose elements are denoted 
by w ,  and A = {w E A}. We say that N-' WN converges to a thermodynamically (Ellis 
1981), and write N-'WN -a, if for any S > O  we can find a constant c =c(S)>O 
such that for all sufficiently large N 

th 

P(1N-I WN -a 13 S} exp(-cN). (13) 

We now prove that thermodynamic convergence implies almost everywhere con- 
vergence; the reverse is not true. Let 1 ~ , 6  be the indicator function of the event 
{IN-' WN -a] aS}; it is either zero or one, and in any case non-negative. Since by (13) 

r m m r  00 

J dP 1N,6 = J d P  IN.6 s exp(-cN)<co 
N = l  N = l  N = l  

we find, for almost every configuration o 

which implies the existence of a last non-zero term. Thus for almost every w there 
exists an N ( w )  such that IN-' W N ( w )  -a I < S for N > N(w). We can repeat this whole 
argument for a sequence of 6's tending to zero, and hence conclude that N-'WN 
converges to a almost everywhere. 

To demonstrate thermodynamic convergence in our short-range models we first 
need an important result corresponding to the strong law of large numbers used 
previously for the almost everywhere convergence. 

Lemma. If Xi, 1 s i s K are K independent identically distributed random variables 
with mean (X) and differentiable moment generating function (exp(tX)), then 

K th 
K-' c xi -(X) 

i = l  

Proof. Let SK = Zf='=, (Xi - (X)). Then, for any t > 0, 

where V(f) = (exp[t(X -(X>)]). Now T(t) is differentiable, and V(0) = 1, V'(0) = 0. 
Hence, by taking f sufficiently small, S - t-' In q ( t )  can be made positive. The case 

s -6 can be handled similarly, so the result is established. 
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Returning to the quantum lattice system of the last section, let us split up the error 
term by the triangle inequality: 

Whatever {J}, for large enough M the first and last terms on the right-hand side can 
each be made no larger than $8 for any S > O ;  the first by (9), and the last because 
the limit in (1 1) exists. Our lemma then gives 

P { I N - '  In ZN - lim (N-'  In z N ) ~  2 S >  
N+m 

so that 

as K, and thus N, tends to infinity. 

5. The replica method 

Given the thermodynamic convergence of N-' In ZN, the validity of the interchange 
of the N and n limits in the replica method is easily obtained from the following 
theorem (Ellis 1981). 

Theorem. The following two statements are equivalent 

(i) There exists a real a such that N-' WN - a. 
(ii) q5 ( n )  is differentiable at n = 0 and 4'(0) = a, where 

th 

This theorem is proved in the appendix. 
In the present case WN :=lnZN, q5(n) is the replica q5(n) of (3) and ( 5 ) ,  and we 

have established (i) in the preceding section, with CY = -pf(p). Thus indeed 4'(0) = 
-of@) and the limits are interchangeable. 

Besides the interchange of limits, application of the replica method involves actually 
computing 4 ( n )  in the neighbourhood of n = 0. The usual approach is the computztion 
cf $ ( E  ) at pcsitive kteger r, followed by a suitable extension to n = 0. As yet there 
is no known criterion which enables one to select a unique extension. The Sherrington- 
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Kirkpatrick (1975) long-range model provides an important example where an 
'obvious' extension is certainly wrong (van Hemmen and Palmer 1979). The situation 
might be more favourable for short-range models, but the problem is still unsolved. 

6. Conclusion 

For systems with short-range interactions we have shown that the free energy of 
almost every sample is equal to the averaged free energy in the thermodynamic limit, 
and that one may interchange the n + 0 and N +a limits in the replica method. In 
general, local quantities such as correlation functions may not be averaged, and because 
the replica method presupposes averaging it has no predictive value for such quantities. 
Finally, it is important to emphasise that our analysis is within equilibrium statistical 
mechanics, assuming the Gibbs prescription. The essence of the behaviour of certain 
random systems, such as spin glasses, may however lie outside this prescription, in 
long-lived metastable states. 

Appendix 

We now prove the main theorem of § 5 .  

Theorem. The following two statements are equivalent 

(i) There exists a real a such that N-' WN - a. 

(ii) q5(t) is differentiable at t = 0 and q5'(0) =a, where 

4 ( t )  = lim N-'  ln(exp(tWN)) = lim 4 N ( t ) .  

th 

N-m N - w  

Apart from several simplifications the proof goes back to Ellis (1981). It is not a 
serious restriction to assume that 4(t)  exists and is finite for all real t. 

(i) + (ii). Since 4 is a limit of the convex functions 4 ~ ,  it is convex itself. Being 
convex it is continuous, and its right and left derivatives at t = O , q 5  L (0) = lim,lo r- 'q5 ( t )  
and 4 L (0) = lim,to r-'4(r), exist and satisfy the inequality q5 k (0)  s q5 > (0). If 
equality holds q5 is differentiable at zero. We shall show q 5 > ( O ) ~ a ;  the inequality 
a s 4: (0) can be proved analogously. Then a s q5 L (0)  s q5 !+ (0) s a  gives the desired 
result. 

Writing YN = N-'  WN -a ,  we have for 0 < t < t (say) and S > 0 

t-14N(r) - a  = (Nt)-' In(exp(tNYN)) 

= (Nt)-' ln(exp(tNYN )[I (1  YN 

s (Nt)-' In[exp(tSN) + e x p ( - a t ~ ) ( e x p ( t ~ ~ ) 1 ~ ~ ~ ~ ~ ~ ~ ) ) ] .  
+ 1 {I yN 1 a 8 1 ~ )  

By the Cauchy-Schwarz inequality and (i), i.e. equation (13) of the main text, we 
obtain for N sufficiently large, 

(exp(fWN)l{/YNj28))s (exp(2tWN))1'2P{IN-1WN - a \  ~ S } ' "  

sexp[tNq5N(2t)-$cN] 
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so that 
t- '&(t)-a i (Nt)-' ln{exp(tSN)+exp[N($~$~(2t)-~c -at)]} .  (Al l  

Since 4N converges to 4 uniformly on [0, 13 (Roberts and Varberg 1973, theorem 
13E), we can choose N so large that for all t (0  i t i $), 

(A2) 1 $dN(2t)-$c - a t i 4 4 ( 2 t ) - q c  -at. 

At the end r will be sent to zero. Now c >0 ,  so we can make the right-hand side of 
(A2) less than or equal to St by taking t i to for a suitable to. Thus we find, combining 
( A l )  and (A2), 

t-'&, ( t )  - a  i S + (Nt)-' In 2 
a n d a s N + m  

t-'q5(t)-a 68. 

Sending first t ,  then 8, to zero ( S  was arbitrary) completes the proof. 
(ii) + (i). Now we are given that q5 ( t )  is differentiable at t = 0, with 4 ' (0)  = a, and 

we have to estimate P{IN-'WN -a  I sa}, As in the proof of the lemma of § 4, we 
obtain for t > 0, 

(A31 

Choose a to so small that Ito'4 ( to)  --q5'(0)1 < + S .  Next choose N so large that to' 14,,,(tO) - 
4(to)J ~ $ 8 .  Then the right-hand side of (A3) can be majorised by exp[-(;toS)N]. The 
probability P{N-' WN G 4'(0) - S }  can be handled similarly, so the result is established. 

P{N-'WN s4' (0)  + S }  i exp[tN(-S + f - 1 4 N ( f )  - 4'(0))]. 

The theorem above assumes 4 ( t )  = lim 4 ~ ( t )  as N + a, whatever t .  We do not 
need so much, however, once we are concerned with physical applications. We first 
notice that a finite interval I containing the origin suffices for our present purposes. 
Next we observe that the sequence of convex functions 4N has to be bounded above 
and below independently of N (van Hemmen and Palmer 1979, appendix B). Thus 
we can find a subsequence that converges uniformly on I to a function 4 (Roberts 
and Varberg 1973, p 20). In § 4 we have shown that (i) holds, with 

a = lim (N- '  In zN). 
N + m  

Hence 4'(0) = a. Moreover, whatever subsequence we take, we always get the same 
derivative at the origin; the answer does not depend on the subsequence used. 

Note added in proof. We would like to correct some misprints which remained in a 
previous paper (van Hemmen and Palmer 1979) for reasons beyond our control. 

Equation (29) should read 

1/2 exp(- $2 2 ,  tanh2[(yq)'/2z] cosh" [(yq)1/2z] 

O3 dz (29) 4 =  
exp(- 2 ,  ~osh" [ (yq ) ' /~z ]  

In equation (36) O(z4) has to be replaced by 0(z4), and hii in (38) is given by 
E:=1 Sa(i)Sa(j). The vector q in appendix A (p 576) is defined by 4 = 
{qap ; 1 s a < p =s n } ,  and one should put a comma after q" = (q12, B, B, C )  in the lemma 
on p 557. 
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